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Cost Cumulant-Based Control for a Class of Linear Quadratic Tracking Problems

Khanh D. Pham
Space Vehicles Directorate

Air Force Research Laboratory
Kirtland AFB, NM 87117 U.S.A.

Abstract— The topic of cost-cumulant control is currently
receiving substantial research from the theoretical community
oriented toward stochastic control theory. For instance, the
present paper extends the application of cost-cumulant con-
troller design to control of a wide class of linear-quadratic
tracking systems where output measurements of a tracker
follow as closely as possible a desired trajectory via a com-
plete statistical description of the associated integral-quadratic
performance-measure. It is shown that the tracking problem
can be solved in two parts: one, a feedback control whose
optimization criterion representing a linear combination of
finite cumulant indices of an integral-quadratic performance-
measure associated to a linear tracking stochastic system over a
finite horizon, is determined by a set of Riccati-type differential
equations; and two, an affine control which takes into account
of dynamics mismatched between a desired trajectory and
tracker states, is found by solving an auxiliary set of differential
equations (incorporating the desired trajectory) backward from
a stable final time.

I. PRELIMINARIES

An interesting extension of the cost-cumulant control the-
ory [4]-[7] when both perfect and noisy state measurements
are available, is to make a linear stochastic system track as
closely as possible a desired trajectory via a complete sta-
tistical description of the associated finite-horizon integral-
quadratic performance-measure. To the best knowledge of
the author, this theoretical development appears to be the
first of its kind and the optimal control problem being
considered herein is actually quite general, and will en-
able control engineer not only to penalize for variations
in, as well as for the levels of, the state variables and
control variables, but also to characterize the probabilistic
distribution of the performance-measure as needed in post
controller-design analysis. Since this problem formulation
is parameterized both by the number of cumulants and by
the scalar coefficients in the linear combination, it defines
a very general Linear-Quadratic-Gaussian (LQG) and Risk
Sensitive problem classes. The special cases where only the
first cost cumulant is minimized and whereas a denumerable
linear combination of cost cumulants is minimized are,
of course, the well known minimum-mean LQG problem
and the Risk Sensitive control objective, respectively. Some
practical applications for this theoretical development can
be found in the references [2] and [3] where in tactical and
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combat situations, a vehicle with the goal seeking nature ini-
tially decides on an appropriate destination and then moves
in an optimal fashion toward that destination, and tracking
problems in economic stabilization policy, respectively.

Consider a linear stochastic tracking system governed by

dx(t) = (A(t)x(t) + B(t)u(t))dt + G(t)dw(t), x(t0) (1)
y(t) = C(t)x(t) (2)

where the deterministic coefficients A ∈ C([t0, tf ];Rn×n),
B ∈ C([t0, tf ];Rn×m), C ∈ C([t0, tf ];Rr×n), and G ∈
C([t0, tf ];Rn×p). The system noise w(t) ∈ Rp is the
p-dimensional stationary Wiener process starting from t0,
independent of the known x(t0) = x0, and defined with
{Ft≥0} being its filtration on a complete filtered probability
space (Ω,F , {Ft≥0},P) over [t0, tf ] with the correlation

E
{
[w(τ)− w(ξ)][w(τ)− w(ξ)]T

}
= W |τ − ξ| , W > 0 .

The control input u ∈ L2
Ft

(Ω; C([t0, tf ];Rm)) the subset
of Hilbert space of Rm-valued square-integrable process on
[t0, tf ] that are adapted to the σ-field Ft generated by w(t)
to the specified system model is selected so that the mea-
surement output y ∈ L2

Ft
(Ω; C([t0, tf ];Rr)) best matches

the desired output z ∈ L2([t0, tf ];Rr) in the cost cumulant
optimization criterion which will be clear shortly. Associated
with the initial condition (t0, x0; u) ∈ [t0, tf ] × Rn ×
L2
Ft

(Ω; C([t0, tf ];Rm)) is a traditional finite-horizon IQF
random cost J : [t0, tf ] × Rn × L2

Ft
(Ω; C([t0, tf ];Rm)) 7→

R+ such that

J(t0, x0; u) = [z(tf )− y(tf )]T Qf [z(tf )− y(tf )] (3)

+
∫ tf

t0

{[z(τ)−y(τ)]TQ(τ) [z(τ)−y(τ)] + uT(τ)R(τ)u(τ)}dτ

in which the terminal penalty error weighting Qf ∈ Rr×r,
the error weighting Q ∈ C([t0, tf ];Rr×r), and the control
input weighting R ∈ C([t0, tf ];Rm×m) are deterministic,
symmetric, and positive semi-definite with R(t) invertible.

In view of the linear system (1)-(2) and the quadratic
cost (3), it is reasonable to assume the control input
being generated from a class of linear-memoryless state-
feedback stategies γ : [t0, tf ] × L2

Ft
(Ω; C([t0, tf ];Rn)) 7→

L2
Ft

(Ω; C([t0, tf ];Rm)), has a form of

u(t) = γ(t, x(t)) = K(t)x(t) + uz(t) , (4)

where uz ∈ C([t0, tf ];Rm) is an additional control signal
which takes into consideration for dynamics mismatched
between the tracking states x(t) and the desired trajectory



z(t) on [t0, tf ] and K ∈ C([t0, tf ];Rm×n) is an admissible
feedback gain in a sense to be specified later. Hence, for the
given initial condition (t0, x0) ∈ [t0, tf ]×Rn and subject to
the control policy (4), the dynamics of the tracking problem
are governed by

dx(t) = [A(t) + B(t)K(t)]x(t)dt + B(t)uz(t)dt

+ G(t)dw(t) , x(t0) = x0 , (5)
y(t) = C(t)x(t) , (6)

and the IQF random cost

J(t0, x0; K, uz) = [z(tf )− y(tf )]T Qf [z(tf )− y(tf )]

+
∫ tf

t0

{
[z(τ)− y(τ)]T Q(τ) [z(τ)− y(τ)]

+ [K(τ)x(τ) + uz(τ)]TR(τ)[K(τ)x(τ) + uz(τ)]
}

dτ. (7)

It is now necessary to develop a procedure for generating
some cost cumulants for the tracking problem. These cost
cumulants are then used to form a performance index in
the cost-cumulant control optimization. In general, it is sug-
gested that the initial condition (t0, x0) should be replaced
by any arbitrary pair (α, xα). Then, for the given uz and
admissible feedback gain K, the random cost (7) is seen as
the “cost-to-go”, J (α, xα). The moment-generating function
of the vector-valued random process (5) is defined by

ϕ (α, xα; θ) , E {exp (θJ (α, xα))} , (8)

where the scalar θ ∈ R+ is a small parameter. Thus, the
cumulant-generating function immediately follows

ψ (α, xα; θ) , ln {ϕ (α, xα; θ)} , (9)

in which ln{·} denotes the natural logarithmic transformation
of an enclosed entity.

Theorem 1: Cost-Cumulant Generating Equations.
For α ∈ [t0, tf ] and θ ∈ R+, define ϕ (α, xα; θ) ,
% (α, θ) exp

{
xT

αΥ(α, θ)xα + 2xT
αη(α, θ)

}
and υ (α, θ) ,

ln{% (α, θ)}. Then, the cost cumulant-generating function
can be expressed as follows

ψ (α, xα; θ) = xT
αΥ(α, θ)xα + 2xT

αη(α, θ) + υ (α, θ) (10)

where Υ(α, θ), η(α, θ), and υ (α, θ) solve the backward-in-
time differential equations
d

dα
Υ(α, θ) = −[A(α) + B(α)K(α)]T Υ(α, θ) (11)

−Υ(α, θ)[A(α) + B(α)K(α)]

− 2Υ(α, θ)G(α)WGT (α)Υ(α, θ)

− θCT (α)Q(α)C(α)− θKT (α)R(α)K(α) ,

d

dα
η (α, θ) = −[A(α) + B(α)K(α)]T η(α, θ) (12)

−Υ(α, θ)B(α)uz(α)

− θKT (α)R(α)uz(α) + θCT (α)Q(α)z(α) ,

d

dα
υ (α, θ) = −Tr

{
Υ(α, θ)G (α)WGT (α)

}
(13)

− 2ηT (α, θ)B(α)uz(α)

− θuT
z (α)R(α)uz(α)− θzT (α)Q(α)z(α)

with the terminal conditions Υ(tf , θ) = θCT (tf )QfC(tf ),
η (tf , θ) = θCT (tf )Qfz(tf ), υ (tf , θ) = θzT (tf )Qfz(tf ).
Remark. The expression for cost cumulants (10) in the
tracking problem indicates that additional second and third
affine terms are taking into account of dynamics mismatched
in their trajectory-governing equations.

By definition, cost cumulants for the tracking problem can
be generated by employing the MacLaurin series expansion
for the cumulant-generating function

ψ (α, xα; θ) =
∞∑

i=1

κi(α, xα)
θi

i!
, (14)

=
∞∑

i=1

∂(i)

∂θ(i)
ψ(α, xα; θ)

∣∣∣∣
θ=0

θi

i!
,

in which κi(α, xα) are called cost cumulants. Furthermore,
the series coefficients of the expansion are computed by (10)

∂(i)

∂θ(i)
ψ(α, xα; θ)

∣∣∣∣
θ=0

= xT
α

∂(i)

∂θ(i)
Υ(α, θ)

∣∣∣∣
θ=0

xα

+ 2xT
α

∂(i)

∂θ(i)
η(α, θ)

∣∣∣∣
θ=0

+
∂(i)

∂θ(i)
υ(α, θ)

∣∣∣∣
θ=0

. (15)

In view of the results (14) and (15), cost cumulants for the
tracking problem are obtained as follows

κi(α, xα) = xT
α

∂(i)

∂θ(i)
Υ(α, θ)

∣∣∣∣
θ=0

xα

+ 2xT
α

∂(i)

∂θ(i)
η(α, θ)

∣∣∣∣
θ=0

+
∂(i)

∂θ(i)
υ(α, θ)

∣∣∣∣
θ=0

, (16)

for any finite 1 ≤ i < ∞. For notational convenience, it is
necessary to denote H(α, i) , ∂(i)

∂θ(i) Υ(α, θ)
∣∣∣
θ=0

, D̆(α, i) ,
∂(i)

∂θ(i) η(α, θ)
∣∣∣
θ=0

, and D(α, i) , ∂(i)

∂θ(i) υ(α, θ)
∣∣∣
θ=0

.
Theorem 2: Cost Cumulants in Tracking Problems.

The tracker dynamics governed by (5)-(6) attempt to track
the desired trajectory z(t) with the IQF cost (7). For k ∈ Z+

fixed, the kth-cost cumulant of the Chi-square type random
cost (7) is given by

κk(t0, x0;K, uz) = xT
0 H(t0, k)x0

+ 2xT
0 D̆(t0, k) + D(t0, k) , (17)

where {H(α, i)}k
i=1, {D̆(α, i)}k

i=1, and {D(α, i)}k
i=1 eval-

uated at α = t0 satisfy the matrix- and vector-valued differ-
ential equations (with the dependence of H(α, i), D̆(α, i),
and D(α, i) upon uz and K suppressed)

d

dα
H(α, 1) = − [A(α) + B(α)K(α)]T H(α, 1)

−H(α, 1) [A(α) + B(α)K(α)]

− CT (α)Q(α)C(α)−KT (α)R(α)K(α) , (18)
d

dα
H(α, i) = − [A(α) + B(α)K(α)]T H(α, i)

−H(α, i) [A(α) + B(α)K(α)]

−
i−1∑

j=1

2i!
j!(i− j)!

H(α, j)G(α)WGT (α)H(α, i− j) , (19)



together with

d

dα
D̆(α, 1) = − [A(α) + B(α)K(α)]T D̆(α, 1) (20)

−H(α, 1)B(α)uz(α)

−KT (α)R(α)uz(α) + CT (α)Q(α)z(α) ,

d

dα
D̆(α, i) = − [A(α) + B(α)K(α)]T D̆(α, i)

−H(α, i)B(α)uz(α) , 2 ≤ i ≤ k (21)

and
d

dα
D(α, 1) = −Tr

{
H(α, 1)G(α)WGT (α)

}
(22)

− 2D̆T (α, 1)B(α)uz(α)

− uT
z (α)R(α)uz(α)− zT (α)Q(α)z(α) ,

d

dα
D(α, i) = −Tr

{
H(α, i)G(α)WGT (α)

}

− 2D̆T (α, i)B(α)uz(α) , 2 ≤ i ≤ k (23)

where the terminal conditions H(tf , 1) = CT (tf )QfC(tf ),
H(tf , i) = 0 for 2 ≤ i ≤ k; D̆(tf , 1) = −CT (tf )Qfz(tf ),
D̆(tf , i) = 0 for 2 ≤ i ≤ k and D(tf , 1) = zT (tf )Qfz(tf ),
D(tf , i) = 0 for 2 ≤ i ≤ k.

II. PROBLEM STATEMENTS

In preparing for the control statements of the tracking
problem, let k-tuple variables H, D̆, and D be defined as
H(·) , (H1(·), . . . ,Hk(·)), D̆(·) ,

(
D̆1(·), . . . , D̆k(·)

)
,

D(·) , (D1(·), . . . ,Dk(·)) for each element Hi ∈
C1([t0, tf ];Rn×n) of H, D̆i ∈ C1([t0, tf ];Rn) of D̆ and
Di ∈ C1([t0, tf ];R) of D having the representations Hi(·) ≡
H(·, i), D̆i(·) ≡ D̆(·, i), and Di(·) ≡ D(·, i) with the
right members satisfying the dynamic equations (18)-(23)
on the horizon [t0, tf ]. The problem formulation is greatly
simplified if the convenient mappings are introduced

Fi : [t0, tf ]× (Rn×n)k × Rm×n 7→ Rn×n

Ği : [t0, tf ]× (Rn×n)k × (Rn)k × Rm×n × Rm 7→ Rn

Gi : [t0, tf ]× (Rn×n)k × (Rn)k × Rm 7→ R

where the actions are given by

F1(α,H,K) , − [A(α) + B(α)K(α)]T H1(α)
−H1(α) [A(α) + B(α)K(α)]

− CT (α)Q(α)C(α)−KT (α)R(α)K(α) ,

Fi(α,H,K) , − [A(α) + B(α)K(α)]T Hi(α)
−Hi(α) [A(α) + B(α)K(α)]

−
i−1∑

j=1

2i!
j!(i− j)!

Hj(α)G(α)WGT (α)Hi−j(α) ,

Ğ1

(
α,H, D̆, K, uz

)
, − [A(α) + B(α)K(α)]T D̆1(α)

−H1(α)B(α)uz(α)−KT(α)R(α)uz(α)+CT(α)Q(α)z(α) ,

Ği

(
α,H, D̆,K, uz

)
, − [A(α) + B(α)K(α)]T D̆i(α)

−Hi(α)B(α)uz(α) ,

G1

(
α,H, D̆, uz

)
, −Tr

{H1(α)G(α)WGT (α)
}

−2D̆T
1 (α)B(α)uz(α)−uT

z (α)R(α)uz(α)−zT (α)Q(α)z(α) ,

Gi

(
α,H, D̆, uz

)
, −Tr

{Hi(α)G(α)WGT (α)
}

− 2D̆T
i (α)B(α)uz(α) .

Now there is no difficulty to establish the product mappings

F1×· · ·×Fk : [t0, tf ]× (Rn×n)k×Rm×n 7→ (Rn×n)k

Ğ1×· · ·×Ğk : [t0, tf ]×(Rn×n)k×(Rn)k×Rm×n×Rm 7→(Rn)k

G1×· · ·×Gk : [t0, tf ]× (Rn×n)k× (Rn)k×Rm 7→ Rk

along with the corresponding notations F , F1 × · · · × Fk,
Ğ , Ğ1×· · ·×Ğk, and G , G1×· · ·×Gk. Thus, the dynamic
equations of motion (18)-(23) can be rewritten as

d

dα
H(α)=F(α,H(α),K(α)), H(tf ) = Hf ,

d

dα
D̆(α)= Ğ

(
α,H(α), D̆(α),K(α), uz(α)

)
, D̆(tf )=D̆f ,

d

dα
D(α)=G

(
α,H(α), D̆(α), uz(α)

)
, D(tf ) = Df

where k-tuple values Hf =
(
CT (tf )QfC(tf ), 0, . . . , 0

)
,

D̆f =
(−CT (tf )Qfz(tf ), 0, . . . , 0

)
, and Df = (0, . . . , 0).

Note that the product system uniquely determines H, D̆
and D once the admissible affine control uz and feedback
gain K are specified. Hence, they are considered as H ≡
H(·,K), D̆ ≡ D̆(·,K, uz), and D ≡ D(·,K, uz). The
performance index in the cost-cumulant control problem can
now be formulated in uz and K.

Definition 1: Performance Index.
Fix k ∈ Z+ and the sequence µ = {µi ≥ 0}k

i=1 with µ1 > 0.
Then, for the given (t0, x0), the performance index

φtk : [t0, tf ]× (Rn×n)k × (Rn)k × Rk 7→ R+

in cost-cumulant control for the tracking problem is defined
as follows

φtk

(
t0,H(t0), D̆(t0),D(t0)

)

,
k∑

i=1

µi

[
xT

0Hi(t0)x0 + 2xT
0 D̆i(t0) +Di(t0)

]
(24)

where the scalar, real constants µi represent parametric
design freedom and levels of influence on the overall cost

distribution. The solutions {Hi(t0) ≥ 0}k
i=1,

{
D̆i(t0)

}k

i=1
and {Di(t0)}k

i=1 evaluated at α = t0 satisfy the dynamic
equations of motion

d

dα
H(α) = F(α,H(α),K(α)), H(tf ) = Hf ,

d

dα
D̆(α) = Ğ

(
α,H(α), D̆(α),K(α), uz(α)

)
, D̆(tf )=D̆f ,

d

dα
D(α) = G

(
α,H(α), D̆(α), uz(α)

)
, D(tf ) = Df .

Definition 2: Affine Control and Feedback Gains.
Let compact subsets U ⊂ Rm and K ⊂ Rm×n be the sets of
allowable affine inputs and gain values. For the given k ∈ Z+



and the sequence µ = {µi ≥ 0}k
i=1 with µ1 > 0, the set of

admissible affine controls Utf ,Hf ,D̆f ,Df ;µ and feedback gains
Ktf ,Hf ,D̆f ,Df ;µ are respectively assumed to be the classes of
C([t0, tf ];Rm) and C([t0, tf ];Rm×n) with values uz(·) ∈ U
and K(·) ∈ K for which solutions to the dynamic equations
with H(tf ) = Hf , D̆(tf ) = D̆f , and D(tf ) = Df

d

dα
H(α) = F(α,H(α), K(α)) , (25)

d

dα
D̆(α) = Ğ

(
α,H(α), D̆(α),K(α), uz(α)

)
, (26)

d

dα
D(α) = G

(
α,H(α), D̆(α), uz(α)

)
(27)

exist on the interval of optimization [t0, tf ].
Definition 3: Optimization Problem.

Suppose that k ∈ Z+ and the sequence µ = {µi ≥ 0}k
i=1

with µ1 > 0 are fixed. Then the control optimization
problem is defined as the minimization of (24) over uz(·) ∈
Utf ,Hf ,D̆f ,Df ;µ, K(·) ∈ Ktf ,Hf ,D̆f ,Df ;µ and subject to the
dynamic equations of motion (25)-(27) for α ∈ [t0, tf ].

Definition 4: Reachable Set.
Let reachable set Q be defined Q ,

{(
ε,Y, Z̆,Z

)
∈

[t0, tf ]× (Rn×n)k × (Rn)k ×Rk
}

such that Uε,Y,Z̆,Z;µ 6= 0
and Kε,Y,Z̆,Z;µ 6= 0.
By adapting to the initial cost problem and the terminolo-
gies present in cost-cumulant control, the Hamilton-Jacobi-
Bellman (HJB) equation satisfied by the value function is
motivated by the excellent treatment [1] and is given below.

Theorem 3: HJB Equation-Mayer Problem.
Let

(
ε,Y, Z̆,Z

)
be any interior point of the reachable set Q

at which the value function V
(
ε,Y, Z̆,Z

)
is differentiable.

If there exist optimal affine control u∗z ∈ Uε,Y,Z̆,Z;µ and
feedback gain K∗ ∈ Kε,Y,Z̆,Z;µ, then the partial differential
equation of dynamic programming

0 = min
uz∈U, K∈K

{
∂

∂ε
V

(
ε,Y, Z̆,Z

)

+
∂

∂ vec(Y)
V

(
ε,Y, Z̆,Z

)
vec (F (ε,Y,K))

+
∂

∂ vec
(
Z̆

)V
(
ε,Y, Z̆,Z

)
vec

(
Ğ

(
ε,Y, Z̆,K, uz

))

+
∂

∂ vec(Z)
V

(
ε,Y, Z̆,Z

)
vec

(
G

(
ε,Y, Z̆, uz

)) }
(28)

is satisfied together with the boundary value condition
V

(
t0,H0, D̆0,D0

)
= φtk

(
t0,H0, D̆0,D0

)
.

Theorem 4: Verification Theorem.
Fix k ∈ Z+ and let W

(
ε,Y, Z̆,Z

)
be a continuously

differentiable solution of the HJB equation (28) which
satisfies the boundary condition W

(
t0,H0, D̆0,D0

)
=

φtk

(
t0,H0, D̆0,D0

)
. Let (tf ,Hf , D̆f ,Df ) be in Q;

(uz,K) in Utf ,Hf ,D̆f ,Df ;µ × Ktf ,Hf ,D̆f ,Df ;µ; H, D̆
and D the corresponding solutions of (25)-(27). Then

W(α,H(α), D̆(α),D(α)) is a non-increasing function of α.
If (u∗z,K

∗) is in Utf ,Hf ,D̆f ,Df ;µ × Ktf ,Hf ,D̆f ,Df ;µ defined
on [t0, tf ] with corresponding solutions, H∗, D̆∗, and D∗ of
(25)-(27) such that for α ∈ [t0, tf ]

0 =
∂

∂ε
W

(
α,H∗(α), D̆∗(α),D∗(α)

)

+
∂

∂vec(Y)
W

(
α,H∗(α), D̆∗(α),D∗(α)

)
·

· vec (F (α,H∗(α),K∗(α)))

+
∂

∂vec(Z̆)
W

(
α,H∗(α), D̆∗(α),D∗(α)

)
·

· vec
(
Ğ

(
α,H∗(α), D̆∗(α),K∗(α), u∗z(α)

))

+
∂

∂ vec(Z)
W

(
α,H∗(α), D̆∗(α),D∗(α)

)
·

· vec
(
G

(
α,H∗(α), D̆∗(α), u∗z(α)

))
, (29)

then u∗z and K∗ are optimal. Moreover,

W
(
ε,Y, Z̆,Z

)
= V

(
ε,Y, Z̆,Z

)
(30)

where V
(
ε,Y, Z̆,Z

)
is the value function.

III. OPTIMAL SOLUTION OF kCC CONTROL

The treatment of HJB approach to obtaining a solution to
the cost-cumulant control problem requires to parameterize
the terminal time and states of the dynamical equations
as

(
ε,Y, Z̆,Z

)
rather than

(
tf ,Hf , D̆f ,Df

)
. That is, for

ε ∈ [t0, tf ] and 1 ≤ i ≤ k, the states of the system (25)-
(27) defined on the interval [t0, ε] have the terminal values
denoted by H(ε) = Y , D̆(ε) = Z̆ , and D(ε) = Z . It is
observed that the performance index (24) is quadratic affine
in terms of the arbitrarily fixed x0. This suggests a solution
to the HJB equation (28) may be sought as below.

Theorem 5: Fix k ∈ Z+ and let
(
ε,Y, Z̆,Z

)
be any

interior point of Q at which the scalar-valued function

W
(
ε,Y, Z̆,Z

)
= xT

0

k∑

i=1

µi (Yi + Ei(ε)) x0

+ 2xT
0

k∑

i=1

µi

(
Z̆i + T̆i(ε)

)
+

k∑

i=1

µi (Zi + Ti(ε)) (31)

is differentiable. The time-varying parametric functions
Ei ∈ C1([t0, tf ];Rn×n), T̆i ∈ C1([t0, tf ];Rn) and Ti ∈
C1([t0, tf ];R) are yet to be determined. The derivative of
W

(
ε,Y, Z̆,Z

)
with respect to ε is given

d

dε
W

(
ε,Y, Z̆,Z

)
= xT

0

k∑

i=1

µi

(
Fi(ε,Y,K)+

d

dε
Ei(ε)

)
x0

+ 2xT
0

k∑

i=1

µi

(
Ği

(
ε,Y, Z̆,K, uz

)
+

d

dε
T̆i(ε)

)

+
k∑

i=1

µi

(
Gi

(
ε,Y, Z̆, uz

)
+

d

dε
Ti(ε)

)
, (32)



provided uz ∈ U and K ∈ K.
Replacing (31) into the HJB equation (28), it follows that

0 = min
uz∈U, K∈K

{
xT

0

k∑

i=1

µi

(
Fi(ε,Y,K) +

d

dε
Ei(ε)

)
x0

+ 2xT
0

k∑

i=1

µi

(
Ği

(
ε,Y, Z̆,K, uz

)
+

d

dε
T̆i(ε)

)

+
k∑

i=1

µi

(
Gi

(
ε,Y, Z̆, uz

)
+

d

dε
Ti(ε)

) }
. (33)

Note that
k∑

i=1

µiFi(ε,Y,K) = − [A(ε) + B(ε)K]T
k∑

i=1

µiYi

−
k∑

i=1

µiYi [A(ε) + B(ε)K]− µ1C
T (ε)Q(ε)C(ε)

− µ1K
TR(ε)K −

k∑

i=2

µi

i−1∑

j=1

2!
j!(i− j)!

YjG(ε)WGT(ε)Yi−j ,

k∑

i=1

µiĞi

(
ε,Y, Z̆,K, uz

)
= − [A(ε) + B(ε)K]T

k∑

i=1

µiZ̆i

−
k∑

i=1

µiYiB(ε)uz − µ1K
TR(ε)uz + µ1C

T(ε)Q(ε)z(ε),

k∑

i=1

µiGi

(
ε,Y, Z̆, uz

)
= −

k∑

i=1

µiTr
{YiG(ε)WGT (ε)

}

− 2
k∑

i=1

µiZ̆T
i B(ε)uz−µ1u

T
z R(ε)uz − µ1z

T(ε)Q(ε)z(ε).

Since x0 and M0 are arbitrary vector and rank-one matrix,
the necessary condition for an extremum of (24) on [t0, ε] is
obtained by differentiating (33) with respect to uz and K

uz(ε, Z̆) = −R−1(ε)BT (ε)
k∑

r=1

µ̂rZ̆r , (34)

K(ε,Y) = −R−1(ε)BT (ε)
k∑

r=1

µ̂rYr , (35)

where µ̂r , µi/µ1 and µ1 > 0. Substituting (34) and (35)
into (33) leads to the value function

xT
0

[
k∑

i=1

µi
d

dε
Ei(ε)−AT (ε)

k∑

i=1

µiYi −
k∑

i=1

µiYiA(ε)

− µ1C
T (ε)Q(ε)C(ε)

+
k∑

r=1

µ̂rYrB(ε)R−1(ε)BT (ε)
k∑

i=1

µiYi

+
k∑

i=1

µiYi(ε)B(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sYs

− µ1

k∑
r=1

µ̂rYrB(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sYs

−
k∑

i=2

µi

i−1∑

j=1

2i!
j!(i− j)!

YjG(ε)WGT (ε)Yi−j

]
x0

+2xT
0

[
k∑

i=1

µi
d

dε
T̆i(ε)−AT (ε)

k∑

i=1

µiZ̆i+µ1C
T (ε)Q(ε)z(ε)

+
k∑

r=1

µrYrB(ε)R−1(ε)BT (ε)
k∑

i=1

µiZ̆i

+
k∑

i=1

µiYiB(ε)R−1(ε)BT (ε)
k∑

r=1

µ̂rZ̆r

− µ1

k∑
r=1

µ̂rYrB(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sZ̆s

]

+
k∑

i=1

µi
d

dε
Ti(ε)−

k∑

i=1

µiTr
{YiG(ε)WGT (ε)

}

+2
k∑

i=1

µiZ̆T
i B(ε)R−1(ε)BT(ε)

k∑
r=1

µ̂rZ̆r−µ1z
T(ε)Q(ε)z(ε)

− µ1

k∑
r=1

µ̂rZ̆T
r B(ε)R−1(ε)BT (ε)

k∑
s=1

µ̂sZ̆s . (36)

The remaining task is to display time-dependent functions

{Ei(·)}k
i=1,

{
T̆i(·)

}k

i=1
, and {Ti(·)}k

i=1, which yield a suf-
ficient condition to have the left-hand side of (36) being

zero for any ε ∈ [t0, tf ], when {Yi}k
i=1 and

{
Z̆i

}k

i=1
are

evaluated along solutions to the cumulant-generating equa-
tions. A careful observation of (36) suggests that {Ei(·)}k

i=1,{
T̆i(·)

}k

i=1
and {Ti(·)}k

i=1 can be chosen to satisfy cer-
tain differential equations whose explicit representations are
omitted herein due to the space limitation. The affine control
and feedback gain specified in (34) and (35) are now applied
along the solution trajectories of the equations (25)-(27)

d

dε
H1(ε) = −AT (ε)H1(ε)−H1(ε)A(ε)− CT (ε)Q(ε)C(ε)

+H1(ε)B(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sHs(ε)

+
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)H1(ε)

−
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sHs(ε) , (37)

d

dε
Hi(ε) = −AT (ε)Hi(ε)−Hi(ε)A(ε)

+Hi(ε)B(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sHs(ε)

+
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)Hi(ε)

−
i−1∑

j=1

2i!
j!(i− j)!

Hj(ε)G(ε)WGT (ε)Hi−j(ε) , (38)



d

dε
D̆1(ε) = −AT (ε)D̆1(ε) + CT (ε)Q(ε)z(ε)

+
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)D̆1(ε)

+Hi(ε)B(ε)R−1(ε)BT (ε)
k∑

r=1

µ̂rD̆r(ε)

−
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sD̆s(ε) , (39)

d

dε
D̆i(ε) =

k∑
r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)D̆i(ε) (40)

−AT (ε)D̆i(ε) +Hi(ε)B(ε)R−1(ε)BT (ε)
k∑

r=1

µ̂rD̆r(ε) ,

d

dε
D1(ε) = −Tr

{H1(ε)G(ε)WGT (ε)
}− zT (ε)Q(ε)z(ε)

+ 2D̆T
1 (ε)B(ε)R−1(ε)BT (ε)

k∑
r=1

µ̂rD̆r(ε)

−
k∑

r=1

µ̂rD̆T
r (ε)B(ε)R−1(ε)BT (ε)

k∑
s=1

µ̂sD̆s(ε) , (41)

d

dε
Di(ε) = −Tr

{Hi(ε)G(ε)WGT (ε)
}

+ 2D̆T
i (ε)B(ε)R−1(ε)BT (ε)

k∑
r=1

µ̂rD̆r(ε) (42)

where the terminal conditions H1(tf ) = CT (tf )QfC(tf ),
Hi(tf ) = 0 for 2 ≤ i ≤ k; D̆1(tf ) = −CT (tf )Qfz(tf ),
D̆i(tf ) = 0 for 2 ≤ i ≤ k and D1(tf ) = zT (tf )Qfz(tf ),
Di(tf ) = 0 for 2 ≤ i ≤ k. The boundary condition of
W(ε,Y, Z̆,Z) implies that

xT
0

k∑

i=1

µi (Hi0 + Ei(t0)) x0

+ 2xT
0

k∑

i=1

µi

(
D̆i0 + T̆i(t0)

)
+

k∑

i=1

µi (Di0 + Ti(t0))

= xT
0

k∑

i=1

µiHi0x0 + 2xT
0

k∑

i=1

µiD̆i0 +
k∑

i=1

µiDi0 .

Therefore, the extremizing affine control (34) and state-
feedback gain (35) minimizing (24) become optimal

u∗z(ε) = −R−1(ε)BT (ε)
k∑

r=1

µ̂rD̆∗r(ε) ,

K∗(ε) = −R−1(ε)BT (ε)
k∑

r=1

µ̂rH∗r(ε) .

Theorem 6: Cost-Cumulant Control Solution.
The tracker dynamics governed by (5)-(6) attempt to track
the desired trajectory z(t) with the Chi-square random cost
(7). Assume both k ∈ Z+ and the sequence µ = {µi ≥ 0}k

i=1

with µ1 > 0 are fixed. Then, the control solution for the

multi-cumulant tracking problem is implemented by

u∗(t) = K∗(t)x∗(t) + u∗z(t) , (43)

K∗(α) = −R−1(α)BT (α)
k∑

r=1

µ̂rH∗r(α) , (44)

u∗z(α) = −R−1(α)BT (α)
k∑

r=1

µ̂rD̆∗r(α) , (45)

where µ̂r , µi/µ1 represent different levels of influence
as they deem important to the overall cost distribution and

{H∗r(α)}k
r=1, and

{
D̆∗r(α)

}k

r=1
are the solutions of the

backward-in-time Riccati-type matrix differential equations
d

dα
H∗1(α) = − [A(α) + B(α)K∗(α)]T H∗1(α) (46)

−H∗1(α) [A(α) + B(α)K∗(α)]

− CT (α)Q(α)C(α)−K∗T (α)R(α)K∗(α) ,

d

dα
H∗r(α) = − [A(α) + B(α)K∗(α)]T H∗r(α) (47)

−H∗r(α) [A(α) + B(α)K∗(α)]

−
r−1∑
s=1

2r!
s!(r − s)!

H∗s(α)G(α)WGT(α)H∗r−s(α),

and the auxiliary backward-in-time vector-valued differential
equations

d

dα
D̆∗1(α) = − [A(α) + B(α)K∗(α)]T D̆∗1(α) (48)

−H1(α)B(α)u∗z(α)

−K∗T (α)R(α)u∗z(α) + CT (α)Q(α)z(α) ,

d

dα
D̆∗r (α) = − [A(α) + B(α)K∗(α)]T D̆∗r (α)

−Hr(α)B(α)u∗z(α) (49)

with the terminal boundary conditions H∗1(tf ) =
CT (tf )QfC(tf ), H∗r(tf ) = 0 for 2 ≤ r ≤ k and
D̆∗1(tf ) = −CT (tf )Qfz(tf ), D̆∗r(tf ) = 0 for 2 ≤ r ≤ k.
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